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reaction), Fe(CO)3diars28 (protonation, no further reaction), 
HRe(CO)5

29 (quantitative formation of ClRe(CO)5). Clearly, 
further studies are necessary to determine the scope and lim
itations of this new procedure for polyhydride synthesis. 
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Sequential Bifunctional Micellar Catalysis 

Sir: 

The comparison of micelles and enzymes is now common
place,1 but the rational design of functionalized surfactants 
to provide increasingly exact enzyme analogues is a more re
cent venture.2 A key feature of chymotrypsin catalysis is basic 
activation by an imidazole group (His-57) of the Ser-195 hy
droxy! moiety; the latter's oxygen is the nucleophile which 
attacks the substrate's carbonyl group.3 Many "model en
zymes" have been designed to mimic this mechanism.4 Mi-
cellar chymotrypsin models have included hydroxyl-5 and 
imidazole-functionalized6 surfactants, but few studies of bi
functional micellar catalysts have appeared.7 Mechanistic 
exploration of these systems is crucial to the construction of 
useful micellar enzyme analogues. 

Recently, we described the comparative effectiveness of 
micellized surfactants I-IV at catalyzing the cleavages of p-

CH3 

W-C16H33-N—R2, Cl" 

I 
Ri CH3 

R2 CH,3 

Ii 
CH3 

CH2CH2OH 

m 
CH3 

CH2Im12 

IV 
CH2CH2OH 
CH2Im12 

nitrophenyl acetate and hexanoate (PNPA and PNPH).10 

Based upon relative A;̂ max values," there seemed to be no 
synergism between the hydroxyl and imidazole moieties of IV 
and no reason to suspect significant differences in mechanistic 
behavior between III and IV. However, although the reaction 
of III with PNPA leads to the formation and decay of an 
acetylimidazole intermediate,68 readily observable at 245 nm 
(Figure 1, curve 1), we can observe no such intermediate during 
the analogous reaction of bifunctional catalyst IV (Figure 1, 
curve 2).13 

From a preparative scale reaction of PNPA with IV,14 we 
quantitatively isolated O-acetyl-IV.15 Thus PNPA did not 
acetylate water under the influence of the bifunctional catalyst. 
The failure of IV to furnish an observable acetylimidazole 
intermediate in its reaction with PNPA can be explained in two 
ways: (a) No intermediate is visible because none is ever 
formed; IV behaves as a chymotrypsin analogue and undergoes 
direct O-acetylation, eq 1. (b) Alternatively, an intermediate 
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Table I. Pseudo-First-order Rate Constants for Acylation and Deacylation of Micellar Catalysts' 

Case 

i 
2 
3 
4 
5 
6 
7 
8 
9 

Catalyst 

in 
in 
IV 
IV 
IV-OAc 
IV+ P 
IV + If 

in + ii/ 
in + ii/ 

Substrate 

PNPA 
PNPH 
PNPA 
PNPH 
PNPA 
PNPA 
PNPH 
PNPA 
PNPH 

^ c y l ( s - ' ) a 

0.051 ±0.003 
0.16 ±0.01 

0.038 ± 0.002 
0.140 ±0.005 

0.027rf 

0.016 ±0.001 
0.032 ± 0.002 
0.036 ± 0.002 
0.081 ±0.004 

*deacyl V^ ) 

0.015 ±0.002 
0.020 ± 0.002 

0.6'' 
0.18 ±0.04 

0.013rf 

0.06 ±0.01 
0.04 ±0.01 
0.17 ±0.03 
0.10 ±0.02 

R e I /tdcacyl 

1.0 
1.3 

>40 
12 
0.87 
4.0 
2.7 

11 
6.7 

" From the release of p-nitrophenolate ion, monitored at 400 or 440 nm. All quoted errors are average deviations from mean values. * Monitored 
at 245.5 nm (PNPA) or 246.5 nm (PNPH). Acylation and deacylation were treated as consecutive first-order reactions.16 ' This is a lower 
limit estimated assuming 0.02 absorbance units as the detection threshold of /V-acetyl-IV and e45.5A"Ac"lv = 2160 (value of e

 V-AC-III^ Consecutive 
first-order reaction analysis (/3max method) was applied.16 d Single run. e [I] = 2.5 X 10"2M; [IV] = 5.0 X 10-3 M. /5.0 X 10-3 Mm each 
surfactant. 

micelle 

HO-^H-T-N-S . 
V H N ^ H - ^ O ^ 
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CH2 

CH3COPNP 

(O 
micelle 

^-NH 

CH2 

I 
CH2 

OCOCH3 

(D 

is not observed because it does not build up to a detectable 
concentration; in a two-step mechanism, eq 2, "slow" N-
acetylation of IV is followed by rapid, hydroxyl-mediated 
deacetylation. A priori, and in either case, the key imidazole 

micelle 

Im OH 

PNPA 
> 

slow 

micelle 

ImCOCH1 OH 
micelle 

fast 

Im OCOCH3 

(2) 

and hydroxyl moieties could be on the same surfactant mole
cule (intramolecular) or on adjacent surfactant molecules 
within a single micelle (intermolecular). 

We now summarize experiments which implicate the se
quential (eq 2) rather than the cooperative mechanism (eq 1) 
in the reaction of IV with PNPA; demonstrate that the se
quential process is largely intermolecular; and set a lower limit 
to the rate constant for the very rapid hydroxyl-mediated 
deacetylation of N-acetylated-IV. 

(1) Reaction of micellar IV with PNPH 1 3 leads to clearly 
observable formation and decay of/V-hexanoyl-IV. From the 
time dependence of its 246.5-nm absorption, /cdeacyi was ex
tracted16 (Table I, case 4). Although deacylation of/V-hexa-
noyl-IV is rapid (&1VdeacyiMnideacyi= 9.0, cases 4 and 2), N-
hexanoylation of IV is also rapid (fcIVdeacyi/^IVacyi = 1-3, case 
4), and the intermediate can be observed. The reaction of 
PNPH and IV therefore follows mechanism 2, strongly 
suggesting that the analogous substrate, PNPA, follows the 
same mechanism. With PNPA, an unfavorable ratio of the 
rates of acylation (slow) and deacylation (fast) must prevent 
accumulation of /V-acetyl-IV. Based on its nonobservation with 

0 3 

O 2 

O l 

UO 
/ 

V 1 

I 

2 

... i 

i i i 

i 

i i i t 

i i 

-

-

i i 
3 4 5 

TIME (min.) 

Figure 1. Relative absorbances at 245 nm during cleavage of PNPA by 
micellar III (curve 1) and IV (curve 2).13 

PNPA, where /tacyi = 0.038 s _ l (case 3), we estimate16 that 
&deacyi for /V-acetyl-IV must be at least 0.6 s _ l under our 
conditions.13 This is reasonable because &deacyi for /V-hexa-
noyl-IV is 0.18 s - 1 , and deacetylation of /V-acetyl-IV should 
be more rapid than dehexanoylation (in a hydroxyl-mediated 
process; see below, and cases 8 and 9). 

(2) Reaction of PNPA and IV, comicellized with fivefold 
excess I, affords /V-acetyl-IV, now observable at 245.5 nm. We 
interpret this experiment as follows. In undiluted micellar IV, 
deacetylation of /V-acetyl-IV involves both intermolecular and 
intramolecular acetyl transfers to hydroxyl groups. Comicel-
lization of IV with excess I affords micelles in which each 
molecule of IV is largely surrounded by molecules of I. Inter
molecular deacetylation of/V-acetyl-IV is inhibited, and the 
overall rate of deacetylation is reduced. Inspection of Table 
I (cases 6 and 3) shows that 5:1 dilution of IV with I yields at 
least a tenfold decrease in the observed fc1Vdeacyh More im
portantly, from the viewpoint of spectroscopic detection, 
^IVdeacyi/^IVacyi is reduced from 15.8 (minimum value) to 
3.75.17'18 

Under our conditions, the major deacylation pathway for 
/V-acyl-IV appears to be intermolecular-}^ fivefold dilution 
of IV with I (which may not suffice to quench all intermolec
ular deacylation) destroys more than half of the enhancement 
of &deacyi (relative to ^"'deacyi) initially brought about by 
functionalization of III with the hydroxyethyl substituent. 
(Compare /cdeacyi for cases 3, 6, and 1, and for cases, 4, 7, and 
2.) 

(3) Intermolecular hydroxyl-mediated deacylation of N-
acylimidazole surfactants can be independently demonstrated. 
Deacylations of /V-acyl-III in 1:1 comicelles of III and hy
droxyethyl surfactant II are 11 (deacetylation) and 5.0 (de
hexanoylation) times faster than deacylation in micellar III 
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alone (cases 8 vs. 1 and 9 vs. 2). (9-Acetyl-II was isolated from 
the III + II + PNPA experiment. Further, the enhancement 
of fcdeacyi. relative to fc'"deacyi. is greater with micellar IV than 
with the 1:1 III + II comicelle (cf. cases 3, 8, and 1, and 4, 9, 
and -2). The additional enhancement can probably be ascribed 
to intramolecular N-to-O acyl transfer. Finally, the reaction 
of PNPA with micellar O-acetyl-IV'5 affords a spectroscopi-
cally observable A^O-diacetyl derivative. Because free hydroxyl 
groups are unavailable for either intermolecular or intramo
lecular N-deacylation of this intermediate, fcdeacyi is small and 
similar to that of ./V-acetyl-III (cases 5 vs. 1). 

The weight of assembled evidence thus leads us to prefer 
mechanism 2 for the cleavage of p-nitrophenyl esters by mi
cellar IV; independent studies by Tonellato afford the same 
conclusion.20 Although cooperative catalysis was not observed 
with IV, we did uncover an extremely facile, sequential process, 
in which a micellar imidazole-functionalized surfactant cleaves 
an ester, then rapidly acylates a proximate hydroxyl group. The 
catalytic advantage of the first step (A:v(

max/A:0
buffer) is 930.' ° 

Because this is the rate determining step of the sequence, it 
confers an effective catalytic advantage of ~37 on the acylation 
of the hydroxyl function, relative to the acylation of pure mi
cellar II by PNPA.10 We are continuing our studies of multi
functional micellar catalysts.21 
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Automerization of a Dewar Thiophene and Its 
exo-S-Oxide. A Dramatic Contrast 

Sir: 

As the only known Dewar isomer of a thiophene, perfluo-
rotetramethyl(Dewar thiophene) (I)1 is an especially inter
esting compound both from structural and dynamical points 
of view. This report concerns 19F DNMR studies of 1 and its 
exo-S-oxide (2) which reveal a marked difference between the 
rates of intramolecular exchange in 1 and 2. 

F3C S FoC s ^ ° 

CF3 CF3 

1 2 
Examination of the 19F DNMR spectrum (56.4 MHz) of 

1 (1.0 M in 1,2,4-trichlorobenzene) at 94 0C (Figure 1) shows 
two quartet resonances at 13.10 and 15.99 ppm (5JFF = 2 Hz) 
downfield from external trifluoroacetamide, consistent with 
the structure of 1. When the temperature is raised (Figure 1), 
the 19F DNMR spectrum undergoes broadening and coales
cence near 190 0C (Figure 1) characteristic of an increasing 
rate of exchange of trifluoromethyl groups between different 
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